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Phase transition in an asymmetric generalization of the zero-temperaturg-state Potts model
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An asymmetric generalization of the zero-temperatiistate Potts model on a one-dimensional lattice, with
and without boundaries, has been studied. The dynamics of the particle number, and especially the large time
behavior of the system, has been analyzed. In the thermodynamic limit, the system exhibits two kinds of phase
transitions, a static and a dynamic phase transition.
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[. INTRODUCTION There is afast phaseand aslow phaselncreasing the reac-
tion rates at the boundaries, the system goes fronslihe
In recent years, reaction-diffusion systems have beephaseto thefast phaseThis model may be considered as a

studied by many people. As mean-field techniques, genebiased voting model, in the sense that there cadifferent

ally, do not give correct results for low-dimensional systems0pinions, and when people at the adjacent sites have differ-

people are motivated to study exactly solvable stochasti€nt opinions, they may interact so that their opinions become

models in low dimensions. Moreover, solving one-the same.

dimensional systems should in principle be easier. Exact re-

sults for some models on a one-dimensional lattice have been Il. ASYMMETRIC  g-STATE POTTS MODEL

obtained, for example ifil—12], and in[13,14] for the case AT ZERO TEMPERATURE

of multispecies systems. Different methods have been used | the ordinary Glauber model, the interaction is between
to study these models, including analytical and asymptoti¢hree neighboring sites. Spin flip brings the system to equi-
methods, mean-field methods, and large-scale numeric@hrium with a heat bath at temperatufe A spin is flipped
methods. , , - with the ratep=1—tanjJ/(KT)], if the spin of both of its
Some interesting problems in nonequilibrium systems arg\ejghhoring sites are the same as itself; and is flipped with
nonequilibrium phase transitions described by phenomengpe ratex = 1+ tanHJ/(kT)], if the spin of both of its neigh-
logical rate equations, and the way the system relaxes 10 if§oring sites are opposite to it. At domain boundaries, the

steady state. Kinetic generalizations of the _Ising model, fo"spins are flipped with unit rate. So the interactions can be
example the Glauber model or the Kawasaki model, are suclyitten as

phenomenological models and have been studied extensively

[15—-19. Combination of the Glauber and the Kawasaki dy- AAA—ATA and BBD— DA o,
namics has been also considef2f—272. One of the models . .

that has been extensively studied is tistate Potts model ADA—ARA and OAD =200 A
evolving according to some generalization of the zero- AAJ=AJC  and  JIA=TAA 1,

temperature Glauber dynami¢see[23-2§, for examplé.

The evolution tends to align all the spins, and so domains of!n€re spin up and spin down are .d?notegpbagdg. One
parallel spins grow with time. can interpret an up spin as a particle, and a down spin as a

In this paper, we want to study an asymmetric generali-hOIE' At zero temperature, the Glauber dynamics is effec-

zation of the zero-temperatucestate Potts model on an in- tively a two-site interaction27]

finite lattice with and without boundaries. There are also re- AT—(AADD) TA—(AADD) 1)
actions at the boundaries. The dynamics of the particle ' '

number, and specially the large time behavior of the systenwhere all the above processes occur with the same rate.

is studied. In the thermodynamic limit, the system shows two One can consider the following interactions, as an asym-
kinds of phase transitions. One of these is a static phaseetric generalization of the zero-temperature Glauber model,
transition, the other a dynamic one. The static phase transi-

tion is controlled by the reaction rates, and is a discontinuous AA, U

change of the behavior of the derivative of the stationary AD— D, v 2

particle density at the end points, with respect to the reaction

rates. The dynamic phase transition is controlled by the reand

action rates at boundaries, and is a discontinuous change of

the relaxation time towards the stationary configuration. GA— [ AA, v 3)

I, u.

*Email address: mohamadi@theory.ipm.ac.ir If u#v, the above system has left-right asymmetry. The
"Email address: mamwad@iasbs.ac.ir above system on an infinite lattice has been investigated in
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[29], where itsn-point functions, its equilibrium states, and state in which the states of all lattice sites are of the same
its relaxation towards these states are studied. It can be eas#yate A, for example. So the final state is

shown that the time evolution equation for the average par-

ticle numbers of the system with the above interactions are o

the same as that of a system with the following interactions, P(ee))= ; PolA), (10
where diffusion is also present:

where|A,) is the state for which all the sites are in the state

A, A A,, andpg is the initial average density of the state,.
AJ—{ AA, U—\ (4) Then, all the correlation functions at infinitely large times
OB v—\ can be obtained easily
and (nfnf --nd)= 557+ pg . (11)
A, ) The evolution equation for the average number of the
GA! AA, v—u (5) statee at the sitej, (n[’) is
0, u-p. (A== (uto)nru(nt ) +o(ny). (12

The model addressed in this article is an asymmetric ge
eralization of the zero-temperatugestate Potts model in one
dimension and with Glauber dynamics. The interaction is
nearest neighbor interaction and is defined as follows:

nThe above equation shows that the evolution equations for
he average number of different states are decoupled, and so
he average number of each state depends only on the initial
value of the average number of that state. In fact,

AAz— A (6) u\(m-ie
AgAg, . (nf‘(t)>=e—(U+u)t% (;) Im_j(ZMt)mja(O)),
Similar to Eqgs.(4) and(5), adding diffusion do not alter the (13

time evolution equation of the average particle numbers. The .

symmetric caseU=v) has been recently analyzed using a@nd at large times,

generalization of the empty interval methf2B]. The one- i

species casey=2) has been studied [29] (without bound- (n*(t))— a~<ﬂ) el — (u+v) +2/T0]/ .
arie9 and [30] (with boundaries It is shown that for the ! Po 5

infinite lattice without boundaries, the system has two

ground state. The sites are all occupied or all vacant. This i is seen from the above equation thativ, the expecta-
reminiscent of the ordinary Glauber model, and asymmetryion at the rightmost sites tend rapidly to their final value,
does not change the ground states. Denoting®y (|Q)) and obviously foru>uv the leftmost sites arrive earlier to
the empty(full) lattice, the state of the system at infinitely their final states.

large times is

(19

~ ll. ¢-STATE POTTS MODEL ON A LATTICE
|P())=(1~po)|0) + pol€2), @) WITH THE BOUNDARIES

where pg is the initial average density. For the asymmetric  |n this section, we study-state Potts model on a lattice
generalization of ther-state Potts model, there ageground  with reaction at the boundaries. The interactions on the bulk
states. To see this, one can divide the state at each site to tw lattice are Eq(6). The exchange of the states at the first
classesA; and notA,, for example. The state nét; is de-  sjte is

noted byB;. So the interactions are

Ag—A, withtherate Ag, (15
AA;, U

AiBy— B,B;, v (8) and at the final site, it is
and Ag—A, withthe rate F;;. (16)

BA B:Bi, u ) Fora#p, Ajgandl'; are rates and should be non-negative.

T AAL . The diagonal elements ¢f andT" are chosen so that

Similar to the asymmetric zero-temperature Glauber model, SeAG=5,I"3=0, (17
the ground states are the states such that all the sites of the
lattice are in the statd,, or none of the sites are in the state where
A;. Repeating the same argument for the substatBg,df is
seen that there arg ground states. Each ground state is a s,=1. (19
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From now on, a repeated subscript and superscript imply a

summation over the repeated index.

The equations of motion for the average numbers are

<hj“>= —(u+ov)(nf)+u(ni ) +ov(ni,),
(nf)=AgnH)—v(ng)+u(n3),
(n{)=Tg(nf)—u(ni)+u(ny_y).
Defining the vectoN, through
Ni=(ni),
Eq. (19) takes the form
N=—(U+0)N+UN, 1+ 0N g, k#1L
N;=AN;—vN;+ouN,,
N =N —uN_+uN, _;.
For the stationary state,
N, = 0.
Substituting the ansatz
N =BZ+CZ,
in the first equation of Eq(21), one arrives at
—(u+v)+vzi+;=0,

j#1L

19

(20

(21)

(22)

(23

(24)

whose solutions are;=1, z,=u/v. First assumeu<uv.

Then, one can write Eq23) as

k—1
Nk:B+ C’

v

Sinces, Ng=1, it is seen thatB andC’ satisfy

s, BY=1,
s,C'*=0.
Using the second and third equations of E2{L), one arrives
at
u
(A=v)[B+C']+v B+C’(;”=O,
u L-1 L-2
(I'=u)|B+C’ ;) +u|B+C'| -

In the thermodynamic limit l(—), these two equations

yield
I'B=0,

(29)

(26)

=0. (27
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(A—v+u)C'=—AB. (28)

The first equation in Eq(28) can be used to determiriz
Substituting it in the second on€, is obtained. The degen-
eracy of the zero eigenvalue bfis equal to the degeneracy
of the stationary average particle number. The mdirtoes
have a zero eigenvalue, sinses the left eigenvector oF
with the eigenvalue zero. If the zero eigenvaludlofs de-
generate, then the final value of the average particle numbers
depend on the initial conditions. Also note that the second
equation of Eq(28) has one and only one solution fa@'.
The reason is that the real part of the eigenvalued afre
nonpositive. Soy —u is not an eigenvalue ok, and hence
the matrix A —v +u is nonsingular.

If u>v, then the term {/v)* diverges for the right end
sites. So, we choose

ul kL
Nk:B‘i‘C” ; (29)
In the thermodynamics limit, one arrives at
AB=0,
(I'tv—u)C"=-TB. (30)

If u>v, it is the degeneracy of the zero eigenvalueAqf
which determines the degeneracy of the stationary states of
the particle numbers. Here too, the second equation of Eq.
(30) determinesC” uniquely.

If u<uv, the profile of average particle number is flat for
the rightmost sites. Aa exceeds, it acquires a finite slope,
proportional to In@/v). For the leftmost sites, this behavior is
reversed. In fact, there is a discontinuous change of the be-
havior of the derivative of the stationary particle number at
the end points. This is a static phase transition, and it is
controlled only by the reaction rates and does not depend on
the reaction rates at the boundaries. The cgs@ has been
already studied if30]. One notes that the matricdsandI’

are
(_a, a )
A= ,
a —a
-b" b
(2 .

b" -—b

in terms of the appropriate parameters of that references.
Here, the zero eigenvalues of andI" are nondegenerate
(unless the rates are zéro

Now let us consider the relaxation of the system towards
its stationary state. The homogeneous part of (E6) is

SNE=hi NP, (32

wheredN is the difference oN from the its stationary value,
so that

s, ONE=0. (33
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To study the relaxation of the system, we investigate the [ ult
eigenvalues oh. One finds ;E(BZL-FCZL):(F—U)( ;) (Bz-+cz™Y)
Exi=—(Utv)xg+uxg_+ovXg ., K#FLL g\t
\[;) (BZ-t+cz7H ).

(37

+Uu

EX{=AgX;—vx{+vX3, (34)
Ext=Tgx{—uxi+ux_,,

where the eigenvalue and eigenvector have been denoted by
E andx, respectively. The solution to these equations is  Substituting E=— (u+v)+uv(Z+Z~1) in the above
equations, one can write them in the matrix form

x¢=BZ+ oz, (35
wherez’s satisfy
u —(u+A)Z+\Juw —(u+A)Z"+ Juw
E=—(u+v)+vzi+2. (36)
' —(W+D)Z + JuwwzZH Y —(w+T)Z L+ Juwz bt
Performing the change of variabig=\u/vZ;, the second
and third equations of Eq34) take the form B
X =0. (39
u -1 u -1 ¢
;E(BZ+CZ )=(A—-v) ;(BZ+CZ )
2
u - . .
to \ﬁ (BZ2+CZ7?), To have 'nontrlwal solutions foB and(C, the determinant of
v the matrix should be zero,

—(U+A)Z+uw —(u+A)Z7 Juw
de =0. (39
—(+D)Z"+Juwz "t —(w+D) 27+ Jupz
|
In the thermodynamic limitl{— ), if all of the roots of Eq. So, if none of the roots of Eq39) satisfy Eq.(42), then

(39) are phases, the largest real part of the eigenvalues of thtee system is in the fast phase, and the relaxation time does
Hamiltonian will be— (u+wv) + 2+/uv, from which the relax-  not depend on the reaction matridésind A. Otherwise, the

ation time of the system is relaxation time does depend on the reaction matrites
slow phasg The transition between these two phases is the
m=(Uu+v—2yuv) L (40)  dynamical phase transition.
Now, let's seek the nonphase solutions of E2§). If Z is
We call this thefast phase a solution to Eq(39), 1/Z is another solution to it. So it is

If some of the roots of Eq(40) are not phases, however, sufficient to seek the solutions wit|>1. In the thermody-
this may be not the case, there may be an eigenvalue of theamic limit, and for|Z|>1, Eq.(39) is simplified to
Hamiltonian with a larger real part, which corresponds to a

larger relaxation time. FaZ=r e'?, one has def \/EZ—(anF)]de( \/EZ—(u+A)]:O, (43
1 which consists of the characteristic equations foand A.
REE)=—(u+v)+Juo|r+ - |cosb. (41)  Denoting the eigenvalues & and A by y and\, respec-

tively, one has
This leads to a larger relaxation time, provided

vty 7 u+An (a4
= or Z= )
1 1
r+ T Ccos6>2. (42 Vuv vuv

As I and A are stochastic matrices, their eigenvalues have

If there is such a solution fdZ, the system is said to be in the nonpositive real parts. Fou=v, the real part of g
slow phase + y)/Juv is then not greater than 1. Hence, it cannot satisfy
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Eq. (42). So, the only relevant equation for finding the sys- X=ReZ),
tem in theslow phasas
u+n Y=Im(2Z). (48)
Z= . (45)
\/E One can translate this in terms ®f The criterion for the

A similar argument shows that fer=u, the first equation of slow phases then seen to be

Eq. (44) is relevant. One also concludes that forv, the
system has nslow phase Re(\)+u

So, without loss of generality, let's take<v. AsT is a [Im(\)[<[Re(A) +u— \/E] \/ \/— '
stochastic matrix, it has at least one, zero eigenvalue. How- 2yuv—Re(M)—u
ever, if this eigenvalue is nondegenerate, the right eigenvec-
tor of I' (B) cannot satisfy or Re\N)>2\uv—u. (49)

S.B"=0, (46 A simple way to induce the phase transition is to multiply

sincesis the left eigenvector df corresponding to the same the matrixA by a parameter. This means multiplying the
eigenvalue. But from Eq33), it is seen tha3 should satisfy rates of the reaction at the first site byAs Re(\)<0, one
Eq. (46). So, from the eigenvalues &, one should set aside €an See that for a large enough valuerofthe value of
one, zero eigenvalue, and consider only the other eigenvaRe(\) +u— Juv will be negative[provided Re{)#0, that
ues. is, provided the zero eigenvalue of the matnixis not de-
The system undergoes a dynamic phase transition at tfgeneratg So the system will be in thiast phaselt is also
point that for one of the’s in Eq. (45) the criterion(42) is ~ seen that as tends to zero, either Aiv —Re(\) —u be-
satisfied. At this point, the real and imaginary partsZof Comes negative, or in the first inequality in E@9) the

satisfy right-hand side becomes greater than the left-hand side
(which tends to zerno So, the system will be in thelow

[ X phase Roughly speaking, increasing the reaction rates brings
Y=%+(X-1) X" X>1, 47 the system from thslow phaseo thefast phaseA similar

argument holds, of course, for the caseu and the eigen-
where values of the matrixX".
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