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Phase transition in an asymmetric generalization of the zero-temperatureq-state Potts model
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An asymmetric generalization of the zero-temperatureq-state Potts model on a one-dimensional lattice, with
and without boundaries, has been studied. The dynamics of the particle number, and especially the large time
behavior of the system, has been analyzed. In the thermodynamic limit, the system exhibits two kinds of phase
transitions, a static and a dynamic phase transition.
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I. INTRODUCTION

In recent years, reaction-diffusion systems have b
studied by many people. As mean-field techniques, ge
ally, do not give correct results for low-dimensional system
people are motivated to study exactly solvable stocha
models in low dimensions. Moreover, solving on
dimensional systems should in principle be easier. Exact
sults for some models on a one-dimensional lattice have b
obtained, for example in@1–12#, and in@13,14# for the case
of multispecies systems. Different methods have been u
to study these models, including analytical and asympt
methods, mean-field methods, and large-scale nume
methods.

Some interesting problems in nonequilibrium systems
nonequilibrium phase transitions described by phenome
logical rate equations, and the way the system relaxes t
steady state. Kinetic generalizations of the Ising model,
example the Glauber model or the Kawasaki model, are s
phenomenological models and have been studied extens
@15–19#. Combination of the Glauber and the Kawasaki d
namics has been also considered@20–22#. One of the models
that has been extensively studied is theq-state Potts mode
evolving according to some generalization of the ze
temperature Glauber dynamics~see@23–28#, for example!.
The evolution tends to align all the spins, and so domain
parallel spins grow with time.

In this paper, we want to study an asymmetric gener
zation of the zero-temperatureq-state Potts model on an in
finite lattice with and without boundaries. There are also
actions at the boundaries. The dynamics of the part
number, and specially the large time behavior of the sys
is studied. In the thermodynamic limit, the system shows t
kinds of phase transitions. One of these is a static ph
transition, the other a dynamic one. The static phase tra
tion is controlled by the reaction rates, and is a discontinu
change of the behavior of the derivative of the station
particle density at the end points, with respect to the reac
rates. The dynamic phase transition is controlled by the
action rates at boundaries, and is a discontinuous chang
the relaxation time towards the stationary configurati
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There is afast phaseand aslow phase. Increasing the reac
tion rates at the boundaries, the system goes from theslow
phaseto the fast phase. This model may be considered as
biased voting model, in the sense that there areq different
opinions, and when people at the adjacent sites have di
ent opinions, they may interact so that their opinions beco
the same.

II. ASYMMETRIC q-STATE POTTS MODEL
AT ZERO TEMPERATURE

In the ordinary Glauber model, the interaction is betwe
three neighboring sites. Spin flip brings the system to eq
librium with a heat bath at temperatureT. A spin is flipped
with the ratem512tanh@J/(kT)#, if the spin of both of its
neighboring sites are the same as itself; and is flipped w
the ratel511tanh@J/(kT)#, if the spin of both of its neigh-
boring sites are opposite to it. At domain boundaries,
spins are flipped with unit rate. So the interactions can
written as,

AAA→ABA and BBB→BAB m,

ABA→AAA and BAB→BBB l,

AAB
ABB and BBA
BAA 1,

where spin up and spin down are denoted byA andB. One
can interpret an up spin as a particle, and a down spin
hole. At zero temperature, the Glauber dynamics is eff
tively a two-site interaction@27#

AB→~AA,BB ! BA→~AA,BB ! ~1!

where all the above processes occur with the same rate
One can consider the following interactions, as an asy

metric generalization of the zero-temperature Glauber mo

AB→H AA, u

BB, v
~2!

and

BA→H AA, v

BB, u.
~3!

If uÞv, the above system has left-right asymmetry. T
above system on an infinite lattice has been investigate
©2001 The American Physical Society05-1
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@29#, where itsn-point functions, its equilibrium states, an
its relaxation towards these states are studied. It can be e
shown that the time evolution equation for the average p
ticle numbers of the system with the above interactions
the same as that of a system with the following interactio
where diffusion is also present:

AB→H BA, l

AA, u2l

BB, v2l

~4!

and

BA→H AB, m

AA, v2m

BB, u2m.

~5!

The model addressed in this article is an asymmetric g
eralization of the zero-temperatureq-state Potts model in on
dimension and with Glauber dynamics. The interaction i
nearest neighbor interaction and is defined as follows:

AaAb→H AaAa , u

AbAb , v.
~6!

Similar to Eqs.~4! and~5!, adding diffusion do not alter the
time evolution equation of the average particle numbers.
symmetric case (u5v) has been recently analyzed using
generalization of the empty interval method@28#. The one-
species case (q52) has been studied in@29# ~without bound-
aries! and @30# ~with boundaries!. It is shown that for the
infinite lattice without boundaries, the system has t
ground state. The sites are all occupied or all vacant. Th
reminiscent of the ordinary Glauber model, and asymme
does not change the ground states. Denoting byu0& (uV&)
the empty~full ! lattice, the state of the system at infinite
large times is

uP~`!&5~12r0!u0&1r0uV&, ~7!

wherer0 is the initial average density. For the asymmet
generalization of theq-state Potts model, there areq ground
states. To see this, one can divide the state at each site to
classes,A1 and not-A1, for example. The state not-A1 is de-
noted byB1. So the interactions are

A1B1→H A1A1 , u

B1B1 , v
~8!

and

B1A1→H B1B1 , u

A1A1 , v.
~9!

Similar to the asymmetric zero-temperature Glauber mo
the ground states are the states such that all the sites o
lattice are in the stateA1, or none of the sites are in the sta
A1. Repeating the same argument for the substates ofB1, it is
seen that there areq ground states. Each ground state is
04610
ily
r-
re
s,

n-

a

e

is
y

wo

l,
the

state in which the states of all lattice sites are of the sa
state,Aa for example. So the final state is

uP~`!&5(
a

r0
auAa&, ~10!

whereuAa& is the state for which all the sites are in the sta
Aa , and r0

a is the initial average density of the stateAa .
Then, all the correlation functions at infinitely large time
can be obtained easily

^ni
anj

b •••nk
g&5dabdag•••r0

a . ~11!

The evolution equation for the average number of
statea at the sitej, ^nj

a& is

^ṅ j
a&52~u1v !^nj

a&1u^nj 21
a &1v^nj 11

a &. ~12!

The above equation shows that the evolution equations
the average number of different states are decoupled, an
the average number of each state depends only on the in
value of the average number of that state. In fact,

^nj
a~ t !&5e2(u1v)t(

m
S u

v D ~m2 j !/2

I m2 j~2Auvt !^nj
a~0!&,

~13!

and at large times,

^nj
a~ t !&2r0

a;S u

v D j /2

e[ 2(u1v)12Auv]/At.
~14!

It is seen from the above equation that ifu,v, the expecta-
tion at the rightmost sites tend rapidly to their final valu
and obviously foru.v the leftmost sites arrive earlier t
their final states.

III. q-STATE POTTS MODEL ON A LATTICE
WITH THE BOUNDARIES

In this section, we studyq-state Potts model on a lattic
with reaction at the boundaries. The interactions on the b
of lattice are Eq.~6!. The exchange of the states at the fi
site is

Ab→Aa with the rate Lb
a , ~15!

and at the final site, it is

Ab→Aa with the rate Gb
a . ~16!

For aÞb, Lb
a andGb

a are rates and should be non-negativ
The diagonal elements ofL andG are chosen so that

saLb
a5saGb

a50, ~17!

where

sa51. ~18!
5-2
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From now on, a repeated subscript and superscript imp
summation over the repeated index.

The equations of motion for the average numbers are

^ṅ j
a&52~u1v !^nj

a&1u^nj 21
a &1v^nj 11

a &, j Þ1,L

^ṅ1
a&5Lb

a^n1
b&2v^n1

a&1v^n2
a&, ~19!

^ṅL
a&5Gb

a^nL
b&2u^nL

a&1u^nL21
a &.

Defining the vectorNk through

Nk
a5^nk

a&, ~20!

Eq. ~19! takes the form

Ṅk52~u1v !Nk1uNk211vNk11 , kÞ1,L

Ṅ15LN12vN11vN2 , ~21!

ṄL5GNL2uNL1uNL21 .

For the stationary state,

Ṅk50. ~22!

Substituting the ansatz

Nk5Bz1
k1Cz2

k , ~23!

in the first equation of Eq.~21!, one arrives at

2~u1v !1vzi1
u

zi
50, ~24!

whose solutions arez151, z25u/v. First assumeu,v.
Then, one can write Eq.~23! as

Nk5B1C8S u

v D k21

. ~25!

SincesaNk
a51, it is seen that,B andC8 satisfy

saBa51,

saC8a50. ~26!

Using the second and third equations of Eq.~21!, one arrives
at

~L2v !@B1C8#1vFB1C8S u

v D G50,

~G2u!FB1C8S u

v D L21G1uFB1C8S u

v D L22G50. ~27!

In the thermodynamic limit (L→`), these two equations
yield

GB50,
04610
a ~L2v1u!C852LB. ~28!

The first equation in Eq.~28! can be used to determineB.
Substituting it in the second one,C8 is obtained. The degen
eracy of the zero eigenvalue ofG is equal to the degenerac
of the stationary average particle number. The matrixG does
have a zero eigenvalue, sinces is the left eigenvector ofG
with the eigenvalue zero. If the zero eigenvalue ofG is de-
generate, then the final value of the average particle num
depend on the initial conditions. Also note that the seco
equation of Eq.~28! has one and only one solution forC8.
The reason is that the real part of the eigenvalues ofL are
nonpositive. So,v2u is not an eigenvalue ofL, and hence
the matrixL2v1u is nonsingular.

If u.v, then the term (u/v)k diverges for the right end
sites. So, we choose

Nk5B1C9S u

v D k2L

. ~29!

In the thermodynamics limit, one arrives at

LB50,

~G1v2u!C952GB. ~30!

If u.v, it is the degeneracy of the zero eigenvalue ofL,
which determines the degeneracy of the stationary state
the particle numbers. Here too, the second equation of
~30! determinesC9 uniquely.

If u,v, the profile of average particle number is flat f
the rightmost sites. Asu exceedsv, it acquires a finite slope
proportional to ln(u/v). For the leftmost sites, this behavior
reversed. In fact, there is a discontinuous change of the
havior of the derivative of the stationary particle number
the end points. This is a static phase transition, and i
controlled only by the reaction rates and does not depend
the reaction rates at the boundaries. The caseq52 has been
already studied in@30#. One notes that the matricesL andG
are

L5S 2a8 a

a8 2aD ,

G5S 2b8 b

b8 2bD ~31!

in terms of the appropriate parameters of that referen
Here, the zero eigenvalues ofL and G are nondegenerat
~unless the rates are zero!.

Now let us consider the relaxation of the system towa
its stationary state. The homogeneous part of Eq.~19! is

ḋNk
a5hkb

la dNl
b , ~32!

wheredN is the difference ofN from the its stationary value
so that

sadNk
a50. ~33!
5-3
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To study the relaxation of the system, we investigate
eigenvalues ofh. One finds

Exk
a52~u1v !xk

a1uxk21
a 1vxk11

a , kÞ1,L

Ex1
a5Lb

ax1
b2vx1

a1vx2
a , ~34!

ExL
a5Gb

axL
b2uxL

a1uxL21
a ,

where the eigenvalue and eigenvector have been denote
E andx, respectively. The solution to these equations is

xk
a5B az1

k1C az2
k , ~35!

wherezi ’s satisfy

E52~u1v !1vzi1
u

zi
. ~36!

Performing the change of variablezi5Au/vZi , the second
and third equations of Eq.~34! take the form

Au

v
E~BZ1CZ21!5~L2v !Au

v
~BZ1CZ21!

1vSAu

v D 2

~BZ21CZ22!,
f t

r,
f t

e

04610
e

by

Au

v
E~BZL1CZ2L!5~G2u!SAu

v D L

~BZL1CZ2L!

1uSAu

v D L21

~BZL211CZ2L11!.

~37!

Substituting E52(u1v)1Auv(Z1Z21) in the above
equations, one can write them in the matrix form

S 2~u1L!Z1Auv 2~u1L!Z211Auv

2~v1G!ZL1AuvZL11 2~v1G!Z2L1AuvZ2L21
D

3S B

CD 50. ~38!

To have nontrivial solutions forB andC, the determinant of
the matrix should be zero,
detS 2~u1L!Z1Auv 2~u1L!Z211Auv

2~v1G!ZL1AuvZL11 2~v1G!Z2L1AuvZ2L21
D 50. ~39!
oes

the
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In the thermodynamic limit (L→`), if all of the roots of Eq.
~39! are phases, the largest real part of the eigenvalues o
Hamiltonian will be2(u1v)12Auv, from which the relax-
ation time of the system is

t f5~u1v22Auv !21. ~40!

We call this thefast phase.
If some of the roots of Eq.~40! are not phases, howeve

this may be not the case, there may be an eigenvalue o
Hamiltonian with a larger real part, which corresponds to
larger relaxation time. ForZ5r eiu, one has

Re~E!52~u1v !1AuvS r 1
1

r D cosu. ~41!

This leads to a larger relaxation time, provided

S r 1
1

r D cosu.2. ~42!

If there is such a solution forZ, the system is said to be in th
slow phase.
he

he
a

So, if none of the roots of Eq.~39! satisfy Eq.~42!, then
the system is in the fast phase, and the relaxation time d
not depend on the reaction matricesG andL. Otherwise, the
relaxation time does depend on the reaction matrices~the
slow phase!. The transition between these two phases is
dynamical phase transition.

Now, let’s seek the nonphase solutions of Eq.~39!. If Z is
a solution to Eq.~39!, 1/Z is another solution to it. So it is
sufficient to seek the solutions withuZu.1. In the thermody-
namic limit, and foruZu.1, Eq. ~39! is simplified to

det@AuvZ2~v1G!#det@AuvZ2~u1L!#50, ~43!

which consists of the characteristic equations forG and L.
Denoting the eigenvalues ofG and L by g and l, respec-
tively, one has

Z5
v1g

Auv
, or Z5

u1l

Auv
. ~44!

As G and L are stochastic matrices, their eigenvalues ha
nonpositive real parts. Foru>v, the real part of (v
1g)/Auv is then not greater than 1. Hence, it cannot sati
5-4
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PHASE TRANSITION IN AN ASYMMETRIC . . . PHYSICAL REVIEW E64 046105
Eq. ~42!. So, the only relevant equation for finding the sy
tem in theslow phaseis

Z5
u1l

Auv
. ~45!

A similar argument shows that forv>u, the first equation of
Eq. ~44! is relevant. One also concludes that foru5v, the
system has noslow phase.

So, without loss of generality, let’s takeu,v. As G is a
stochastic matrix, it has at least one, zero eigenvalue. H
ever, if this eigenvalue is nondegenerate, the right eigen
tor of G (B) cannot satisfy

saB a50, ~46!

sinces is the left eigenvector ofG corresponding to the sam
eigenvalue. But from Eq.~33!, it is seen thatB should satisfy
Eq. ~46!. So, from the eigenvalues ofG, one should set asid
one, zero eigenvalue, and consider only the other eigen
ues.

The system undergoes a dynamic phase transition a
point that for one of theZ’s in Eq. ~45! the criterion~42! is
satisfied. At this point, the real and imaginary parts ofZ
satisfy

Y56~X21!A X

22X
, X.1, ~47!

where
n.

n,

ys

.

t.

.

nt
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X5Re~Z!,

Y5Im~Z!. ~48!

One can translate this in terms ofl. The criterion for the
slow phaseis then seen to be

uIm~l!u,@Re~l!1u2Auv#A Re~l!1u

2Auv2Re~l!2u
,

or Re~l!.2Auv2u. ~49!

A simple way to induce the phase transition is to multip
the matrixL by a parameterr. This means multiplying the
rates of the reaction at the first site byr. As Re(l)<0, one
can see that for a large enough value ofr, the value of
Re(l)1u2Auv will be negative@provided Re(l)Þ0, that
is, provided the zero eigenvalue of the matrixL is not de-
generate#. So the system will be in thefast phase. It is also
seen that asr tends to zero, either 2Auv2Re(l)2u be-
comes negative, or in the first inequality in Eq.~49! the
right-hand side becomes greater than the left-hand
~which tends to zero!. So, the system will be in theslow
phase. Roughly speaking, increasing the reaction rates bri
the system from theslow phaseto the fast phase. A similar
argument holds, of course, for the casev.u and the eigen-
values of the matrixG.
ev.
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